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Abstract. Improper double point groups can be defined under two alternative multiplication 
rules in which the square of the inversion is identified with the identity and with a turn 
by 2n respectively, although the first rule is the standard one. It is shown that the second 
multiplication rule can be transformed away into the first one but that, in this process, 
transformation rules of spinors for j = 4 are obtained which differ from the standard ones, 
thus solving the following problem. In the standard method, spinors for j = f are defined 
as gerade (even with respect to inversion) and thus their tensor products are incapable of 
generating a complete set of irreducible bases of 0(3) ,  the ungerade harmonics for j = 1 
having to be postulated outside the tensor hierarchy. It is shown that in the new scheme, 
once the standard multiplication rule for the inversion is defined, spinors for j = 2 a PPear 
which are ungerade as well as gerade and thus their tensor products span a complete set 
of bases of O(3). Comparison is made with the treatment of this problem by projective 
representations. 

1. Introduction 

It is well known that a complete set of irreducible bases of SO(3) can be obtained 
from the tensor products of the spinor basis for j = 4, of components ut$:, U:':,,, which 
we shall write as pcLI,  p2 respectively. We write the row vector basis as <p,p2)  and 
then, if gESO(3)  is parametrised by the Cayley-Klein parameters a, b (see, e.g., 
Altmann 1986, p 117), the representation of SO(3) is given by 

We shall be concerned with the improper rotation group 0(3) ,  which is written as 
follows: 

0 ( 3 ) = S 0 ( 3 ) 0 C i ,  C i = E O i  (1.2) 
where i is the inversion. In dealing with 0(3), therefore, an expression must be given 
for the transformation of a spinor under the inversion and it is traditional to use a 
rule that goes back to Pauli (see, e.g., Altmann 1986, p 108): 

(1.3) 

This rule, which for convenience we shall call the Pauli rule, is standard and must be 
respected in any treatment of the rotation group. (Although an alternative, called the 
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Cartan rule, will be presented later in 9 3, it must be made clear now that its use is 
provisional as a step towards recovering equation (1.3) from a different point of view.) 
The Pauli rule, however, as hitherto used, entails two problems in dealing with the 
bases of O(3). First, we know that C, in (1.2) must have two irreducible representations, 
A,  and A , ,  which are gerade (even with respect to inversion) and ungerade (odd) 
respectively. It is clear that the basis in (1.3), on reduction, will provide a basis for 
A, only and thus that no basis for A ,  appears directly for j = f. The second difficulty 
is a consequence of the first. When forming the (symmetrised) tensor product of two 
bases <g,g21 in order to obtain the basis for j = 1, it is clear from (1.3) that the resulting 
basis is gerade, whereas the spherical harmonics for j = 1 are ungerade. In order to 
form a complete set of irreducible bases of O(3) by tensor products, it is thus necessary 
to postulate an ungerade basis for j = 1 from outside the tensor hierarchy. Once this 
is done, the coupling of this basis j = 1 (ungerade) with the basis j =f (gerade) in 
equation (1.3) will yield a basis of j = (ungerade) and a basis j = (ungerade), the 
latter providing in this indirect way the missing basis of C,. The procedure we have 
just described is used, e.g., by Koster et a1 (1963) and Pyykko and Toivonen (1983). 

The problem of the bases of C, is treated in Altmann (1986, p 194) by the projective 
representation method. In this method two alternative factor systems, called the Pauli 
and Cartan gauges respectively, can be defined. In order to show that this duality is 
not an artefact of the projective representation method, the double group approach 
will be used in this paper and it will be demonstrated that for a given improper point 
group two alternative double groups can be defined, which we shall call the Pauli and 
Cartan groups respectively, and which differ in the multiplication rule for i .  We shall 
see that, ultimately, the Pauli group is the only one that needs to be used. Consideration 
of the Cartan group, however, will allow the problems stated in this introduction to 
be solved. Comparison with the projective representation approach will be made in § 4. 

2. The double groups 

Consider a point group G of operations g ,  E E, g , ,  . . . , g , .  A turn by 277 is the identity 
E for bases of integral j but it multiplies half-integral bases by a phase factor -1, and 
it is then realised as a new operator I?, so as to make this behaviour of half-integral 
bases explicit. I? commutes with all g e  G and, on writing g g  or gI? as g the double 
group E of G is defined as 

(2.1) 

Improper point groups are of two types (see, e.g., Altmann 1977, p 272). The direct 
product of any point group H with C, gives an improper point group which contains 
the inversion: 

G = g , , g 2 ,  . . . , g n r i , , g 2 , . .  . , i n .  

G = H @ C , .  (2.2) 

Improper point groups without the inversion are obtained by first expressing any 
proper point group G‘ in cosets of a halving subgroup H (whose order is one half the 
order of G). Then an improper group G without inversion is written by the following 
prescription: 

G ’ =  H O g ‘ H  g ‘ e  G’ g ’ g  H + G  = H O i g ’ H .  (2.3) 
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The double groups d corresponding to G in (2.2) or (2 .3)  are obtained by doubling 
E into the pair E, E, i.e. by substituting I? for H in either case: 

d=l?@C, G = Ei o ig'fi. (2.4) 

6 ( 3 ) = z i ( 3 ) 0 C , .  (2.5) 

The double group O ( 3 )  follows at once from (1.2): 

Defining the multiplication rules unambiguously even for a proper double group is 
not trivial (see Altmann 1986). It is sufficient for our purposes here, however, to draw 
attention to an important ambiguity in the multiplication rules of 6 ( 3 )  or of any of 
its sub-groups (2.4). Whereas, in the single group G, i2 must be the identity E it can 
be in d either the identity E or its realisation as a turn by 2 ~ ,  E :  

a point which is noted by Berestetskii et a1 (1971, p 58) .  It will be convenient to call 
(2.6) and (2.7) the Pauli and the Cartan multiplication rules. It should be clear that, 
with these rules, any improper point group G yields two realisations of two distinct 
abstract groups. Thus, each double group 6 can be understood as either 6, or e,, 
the Pauli and Cartan double groups respectively. We shall presently show, however, 
that these two groups lead to the same observables in physical applications. 

If, given an operator g, we denote with g its matrix representative, we know that, 
in all representations, 

E = l  E = - 1  (2.8) 

where 1 is the unit matrix of the same dimension as that of the representation in 
question. If we introduce (2.8) into (2.6) and (2.7) we immediately obtain: 

A 
A 

A 

i = l  ie  eP (2.9) 

i = -i l  i E  6, (2.10) 
* 

where the minus sign in (2.10) is arbitrary and has been added for later convenience. 
In order to understand the meaning of the difference between (2.9) and (2.10) we 
recall that for any operator g and a basis of functions 4', . . . , 4" written as a row 
vector ( 41, &, . . . , bnl, the action of g on the basis is given by 

g(4142.. . 4"l = (4142.. * 4"li. (2.11) 

Thus, the difference between (2.9) and (2.10) is that, in the latter case, the basis is 
multiplied by -i for all operations which contain the inversion. This is a phase factor 
which cannot affect the energy. Also, such a phase factor cannot affect the irreducibility 
of a representation (because the sum of the moduli squared of the characters remains 
invariant) or their orthogonality. 

It follows from the above that the difference between the Cartan and Pauli double 
groups is, in principle, trivial. One can easily go from the Cartan to the Pauli group 
by multiplying the operators which contain the inversion with the factor +i (see (2.10)). 
Such a factor will be called a gauge factor (see § 4) .  

I t  is tempting to conclude from the above that the Cartan double group is of little 
interest and should be replaced by the simpler Pauli double group, and this is probably 
the reason not only for the hitherto universal use of the Pauli rule but also for the 
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complete neglect of the Cartan one. We shall see, however, that when the Cartan 
double group is used as an intermediate step towards the construction (by a change 
of gauge) of the Pauli double group some useful results appear about the symmetry 
behaviour of the spinor bases. 

3. Behaviour of the spinor basis under inversion 

We shall first work within the Pauli double group. If g is a proper rotation of 6(3) ,  
its action on the spinor (pIp2) is given by ( l . l ) ,  whereas for i (2.9) gives 

(3.1) 

in agreement, of course, with the standard rule (1.3). We want to consider also the 
complex conjugate spinor (pTwTI, the matrices for which are obtained by complex 
conjugation on (1.1) and (3.1): 

g<PTPTI=<P,P*I * * [ a *  -b  “’I a (3.2) 

It is clear that the matrices in (3.2) and (1.1) have the same trace, and that those in 
(3.1) and (3.3) are identical. Thus, (plp21 and (pTp; (  must belong to equivalent 
representations and it is easy to obtain the transformation of (pTpTI which will make 
both representations identical: i 

(3.5) 

It is clear that, in the Pauli double group, except for the trivial rearrangement shown 
in the last two equations, a spinor and its conjugate span identical representations. 
This will no longer be the case in the Cartan double group, as we shall now demonstrate. 

In the Cartan double group, clearly, (1.1) and (3.4) are still valid for a proper 
rotation g, whereas from (2.10), (3.1) for i is replaced by 

Correspondingly, 

(3.6) 

(3.7) 

It is clear that as a difference with the Pauli group a spinor and its conjugate span 
non-equivalent representations in the Cartan double group. The significance of this 
result will become apparent when we go over from (3.6) and (3.7) to the Pauli group, 
the latter being the standard and most practical realisation of the double group. We 
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have seen in § 2 that one passes from the Cartan to the Pauli group by multiplying 
the improper operations with i. When this is done, (3.6) and (3.7) give, respectively, 

(3.8) 

Equation (3.8) coincides of course with (3.1) (it is for this purpose that the negative 
sign was chosen in (2.10), and verifies that we have now returned to the Pauli group, 
in which spinors are gerade. But, whereas in the previous presentation of the Pauli 
group conjugate spinors were also gerade, (3 .9 )  shows that, even within the Pauli 
group, conjugate spinors do not span the same representation as spinors but rather 
that they are ungerade. 

4. The bases of O(3) 

From ( 2 . 5 ) ,  it is useful to consider first the bases of C, c 6 ( 3 ) .  From our first presenta- 
tion of the Pauli group in (3.1) and (3.3) it is clear that the two operations E and i of 
Ci are represented by the matrices l2 and l2 respectively, unit matrices of dimension 
two. On reduction, this representation gives the single representation for which and 
i are respectively 1 and 1 ,  i.e. the gerade representation A,. It is clear that no ungerade 
representation can be derived directly from bases withj  = f. In our second presentation 
of the Pauli group, via the Cartan group, there are two non-equivalent representations 
of C,. In the first = 12,  f = 12, with basis <pIp21 (see (3.8)),  and in the second I? = 1 2 ,  
f = -12,  with basis < p $ ,  -pf I  (see (3.9)).  The first representation will reduce into A, 
as defined before, with basis U;:: (one of the spinor components) and the second will 
reduce into a representation A, in which = 1, f = -1, clearly ungerade and with basis 
(U$)*. We have now found the missing basis of C, thus solving the first problem 
discussed in 0 1 .  It is also clear how the second problem therein stated is solved. We 
now have two bases of 6 ( 3 )  fo r i=$ ,  <pIp21 (gerade) and <pz,  -p?I (ungerade). On 
forming the direct product of these two bases we must get an ungerade four-dimensional 
basis which, from the Clebsch-Gordan rule, must reduce into two bases, one for j = 1 ,  
ungerade, dimension 3 (symmetrised tensor product), and one for j = 0, ungerade, 
dimension 1 (antisymmetrised tensor product). The first is the spherical harmonicj = 1 
which hitherto had to be postulated, since it was unobtainable as a tensor product 
from j = 1 spinors, and the second basis is a pseudoscalar. 

In order to discuss the bases of 6 ( 3 )  we first consider those of =(3),  for which 
purpose <U'/*(, <u' l ,  etc, will denote the irreducible bases for j = f, 1, etc, respectively. 
In ?%(3), < u1l21 and < u'/'I* belong to the same irreducible representation for j = 1, 
(although they are g and U respectively, but iam(3)). Bases for j =  1 are obtained 
from <u"~IO<U'/~I,  (g); < ~ ' / ~ l * O < u ' / ~ l * ,  ( 8 ) ;  < U ' / ~ ~ O < U ' / ~ I * ,  (u),all  ofwhich belong 
to the same representation. On denoting <u' lg ,  <u'l ,  the bases so far defined, the 
bases for j = are then obtained from 

<u'l,o<u'/21, ( g )  <u'luo<u''21*, ( g )  

<u'luO< u1/21, (U) <u'l,"''2(*, ( U )  
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all of which belong to the same representation. The same applies for higher values of 
j .  In  6 (3) ,  from the relation 6 ( 3 ) = % ( 3 ) 0 C i ,  each of the representations o f m ( 3 )  
splits in two, one gerade and the other ungerade, and the bases described above now 
separate into these two representations, in accordance to their parity. I t  will be_seen 
that the scheme proposed describes very simply and naturally all the bases of O(3). 
The basis <u' l ,  corresponds to the basis S,, S,, S,  defined in a somewhat arbitrary 
fashion by Koster et al (1963). 

5. Discussion 

The work which we have done is considerably streamlined on using the projective 
representation approach as discussed in Altmann (1986). Whereas in an ordinary 
(vector) representation the product of the matrix representatives of g, and g, is the 
matrix representative of g,gJ, in a projective representation a projective factor appears 
on the right-hand side, which is a complex number depending on g ,  and gJ.  It can 
now be proved (see below) that two different projective factors can be chosen for the 
product i2, +1, and -1, respectively called the Pauli and Cartan factors. Given a 
projective representation a so-called change of gauge can be effected by multiplying 
the matrix of each operation g, by a stated complex number. This will result in a new 
factor system, If the matrices for i are multiplied by i, the Cartan factor system or 
Cartan gauge changes into the Pauli gauge, which parallels precisely what we have 
done in the double group and explains the terminology adopted. 

Altmann (1986) gives various reasons for the use of the Cartan projective factor 
-1 for i2, but important support for its use derives from the use of the Clifford algebra. 
In the Clifford algebra V3 with unit elements e , ,  e , ,  e3 such that 

e,eJ + eJe, = 26, (5.1) 

it is shown that the product e,e2e3 maps into the inversion i (see Altmann 1986, p 2 2 2 ) .  
It is now simple to prove from (5.1) that 

ele,e3ele2e3 = -1 (5.2) 

thus verifying the Cartan factor. 
The significance of a spinor transformation such as (1.3) must be discussed. Because 

spinor components are homogeneous coordinates in a projective plane, it is their ratio 
p ,  : p2 which is significant rather than their individual values. That is, p ,  and p2 can 
each be multiplied by an arbitrary factor without changing the physical meaning of 
the spinor. Because the spinor invariant pTpI+pTp2 must be preserved, this factor 
w must be a phase factor. This means that the transformation matrix 1 in (1.3) should 
be written in a more general form as wl. Because the representative of i2 must be *1 
it follows that w can be *l  or *i. Thus, the transformation rule (1.3) is quite 
conventional and it could be changed (re-gauged) into one with any of the matrices 
in (3.6)-(3.9). The choice of the transformation rules under the inversion for the spinor 
and its complex conjugate is, therefore, within these limits, quite arbitrary. What we 
have done is to show how this choice can be done in a consistent and useful way. 

Finally, a short reference to relativistic spinors may be useful. I t  is well known 
that in relativity a distinction must always be made between a spinor and its complex 
conjugate, the latter components being conventionally denoted with dots or primes 
(see Berestetskii et a1 1971, Woodhouse 1980). The problem of space inversion in this 
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case has been considered by Niederer and O’Raifeartaigh (1974) and Staruszkiewicz 
(1976). The first-mentioned authors, in particular, prove that relativistic spinors separ- 
ate out in two types which have the same transformation properties under SU(2),  but 
which transform differently under inversion. 
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